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1 Additional Details on Software Data

We introduce a source of empirical data where interventions are possible: large-scale software sys-
tems. We performed experiments on three large computational systems: Postgres, the Java Devel-
opment Kit, and HTTP processing. These systems have many desirable properties for the purposes
of empirical evaluation: (1) They are pre-existing systems created by people other than the re-
searchers for a purpose other than evaluating algorithms for causal discovery; (2) They produce
non-deterministic experimental results due to latent variables and natural stochasticity; (3) System
parameters provide natural treatment variables; and (4) Each experiment is recoverable, allowing
the same experiment to be performed multiple times with different combinations of interventions.

Within each computational system, we measure three classes of variables: outcomes, treatments,
and subject covariates. Here, outcomes are measurements of the result of a computational process,
treatments correspond to system configurations and are selected such that they could plausibly in-
duce changes in outcomes, and subject covariates logically exist prior to treatment and are invariant
with respect to treatment. Using these variables, we can apply all combinations of treatments to all
subjects, and we can use these results to estimate actual interventional distributions for the effects of
each treatment variable on each outcome variable. We can also then sub-sample these experimental
data sets in a manner which simulates observational bias to produce observational-style data sets,
allowing us to evaluate an algorithm’s performance on pseudo-observational data and evaluate it
using actual interventional effects. These data sets will be made available after publication.

We had a number of goals in mind when gathering data from our real domains:

• Causal Sufficiency: The algorithms we studied require that no pair of variables in the
model are both caused by a latent variable. We can guarantee this is true for pairs of
treatments and outcomes (since treatments have no parents in the original data set), but
needed to employ domain knowledge to limit sources of causal sufficiency violations with
regard to other pairs of variables.

• Acyclicity: Each of the systems can be described by a “single-shot” computational process
which starts and finishes without the possibility for feedback.

• Instance Independence: We took efforts to ensure that each execution of the computa-
tional process was independent of previous executions. In most cases, this required clearing
caches and resetting other aspects of system state.

• Plausible Dependence: We selected variables that we believed would be causally related.

Each domain is characterized by three classes of variables: subject covariates, treatments, and out-
comes. Under the factorial experiment design, outcomes were measured for every combination of
subjects and treatments. This yields a data set with many records for the same subject, as in the ex-
ample in Table 1. To permit greater opportunities for observational sampling, we performed multiple
trials of each factorial experiment. Given the difficulty associated with modeling highly complicated
outcomes such as runtime, we employed a normalization scheme for each data set, dividing outcome
values by a “baseline” value—the median control-case outcome value. Thus, we ultimately recorded
outcomes which represent a deviation from this baseline. In this regard, our experimental results re-
semble a within-subjects design Greenwald [1976], although without many of the pitfalls that plague
experiments on humans, such as non-independence of outcome measurements. In the original data
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Subject ID Covariate Treatment Outcome
1 A 0 1.33
1 A 1 0.96
2 B 0 1.89
2 B 1 0.54
3 A 0 1.02
3 A 1 0.99
4 A 0 1.35
4 A 1 1.12

Table 1: An Example of a Factorial Experiment with Four Subjects and a Binary Treatment
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Figure 1: Consistent Model for the JDK Domain

from each domain, subject covariates are either discrete, continuous, or binary; treatments are bi-
nary; and outcomes are continuous. We converted each of the variables to a discrete representation
to make parametrization and inference more robust.

1.1 Java Development Kit

Our experiments on the Java Development Kit (version 1.7.0 60) used 2,500 Java projects ob-
tained from GitHub as the subjects under study. We retrieved only projects which use the Maven
build tool to facilitate automated compilation and execution. Additionally, we constrained our search
to include only projects which had unit tests. This may introduce selection bias in our data collec-
tion processes, but this is acceptable. It is not important that our conclusions generalize to some
population of computational systems, only that there are causal dependencies which hold on the
sub-population under investigation. Of those, 473 compiled and ran without intervention. This
group yielded a total of 7,568 subject-treatment combinations. For each combination, we compile
and execute the unit tests of the Java project. In order to obtain full state recovery between each trial,
any compiled project files were cleared between executions. Thirty-five CPU days were required to
collect this data using several Amazon EC2 instances.

1.1.1 Treatments

• Aggressive Compiler Optimization: Disabling this option (enabled by default) pre-
vents some compiler optimizations from running, potentially slowing down execution time
but perhaps reducing compilation time. This option is disabled with the javac option
-XX:+AggressiveOpts.

• Emission of Debugging Symbols: Debugging symbols are used to provide a map through
the compiled source code that can be used for interactive debugging and diagnostics. In-
clusion of these symbols may require some time during the compilation phase, increase the
size of the compiled program, and could possibly impact runtime. This corresponds to the
-g flag of javac.
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• Garbage Collection Methodology: The Java Development Kit supports several garbage
collection schemes. Two were considered: parallel and serial. These schemes are activated
with the -XX:-UseParallelGC or -XX:-UseSerialGC arguments.

• Code Obfuscation: Several third-party tools are capable of obfuscating compiled code,
making reverse-engineering difficult. This process could also affect the size of the compiled
project files. The yGuard1 tool was used for this purpose.

1.1.2 Outcomes

• Number of Bytecode Instructions: Before execution, Java code is compiled to an inter-
mediate language referred to as bytecode. We measured the number of atomic instructions,
or operations, in this compiled code to form this outcome using a custom-built bytecode
analysis tool based on Javassist2.

• Total Unit Test Time: Each project we gathered contains one or more unit tests. To capture
the runtime of the full unit test workload, we computed the sum of runtimes of all unit tests
for a given project.

• Allocated Bytes: The Java Virtual Machine supports a profiling option
(-agentlib:hprof=heap=sites) which can be used to track heap statistics
throughout a program’s execution. We utilized this feature to obtain the total number of
bytes allocated during unit test execution.

• Compiled Code Size: Java programs are often packaged in an format known as a JAR
(Java ARchive). To characterize the size of the compiled code, we recorded the size in
bytes of the associated JAR file.

• Compilation Time: In order to execute unit tests, the entire project needs to be compiled.
This outcome represents the time used to convert all source files to their bytecode equiva-
lents.

1.1.3 Subject Covariates

All subject covariates were obtained using the JavaNCSS tool3.

• # NCSS (non-comment source statements) in Project Source: This covariate is highly
predictive of compiled code size. Conceivably, in observational settings, large projects
could also be associated with more liberal use of advanced compilation settings and tools,
such as a code obfuscator.

• # NCSS, Functions, and Classes in Unit Test Source: These covariates are somewhat
representative of the unit test workload. Projects with many lengthy unit tests may also
have longer total unit test runtime.

• # “Javadoc” comments in Unit Test Source: This covariate could be indicative of code
quality. Well-commented code is perhaps more likely to be found in high-quality projects.
This code may be more likely to be used in production environments, and thus could be less
likely to be observed with debugging symbols. This feature is used in the treatment-biasing
procedure for construction of observational data sets.

1.2 Postgres

Consistent with a data warehousing scenario, we employ a fixed database for our Postgres (version
9.2.2) experiments: a sample of the data from Stack Overflow, drawn from the Stack Exchange
Data Explorer4. The data explorer also houses many user-generated queries. We collected 29,375
of the most popular queries to use as subjects for this study. Stack Exchange’s data warehouse uses
Microsoft SQL Server, which does not completely overlap with Postgres in supported features and
syntax. Some queries use only ANSI-compliant syntax and run successfully on either SQL Server
or Postgres. To obtain as large a set of subjects as possible, we employed a semantics-preserving

1http://www.yworks.com/en/products yguard about.html
2http://www.csg.ci.i.u-tokyo.ac.jp/ chiba/javassist/
3http://javancss.codehaus.org/
4http://data.stackexchange.com/
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Figure 2: Consistent Model for the Postgres Domain

query rewriting scheme to adapt queries into Postgres-compliant syntax wherever possible. This
yielded a set of 11,252 user-generated queries which executed successfully within Postgres for a
total of 90,016 subject-treatment combinations. In order to recover system state between trials, the
shared memory setting (specifying how much main memory Postgres can use for caching) was set
to 128 kilobytes, limiting caching significantly. Any queries which required more than 30 seconds
to execute were marked as “failures” in order to prevent long-running queries from holding up other
queries, which typically required one second to execute. As with the JDK data set, this may induce
sampling bias, but we are not aiming for our experimental findings to generalize to the broader
population of database queries.

1.2.1 Treatments

• Indexing: A common administration task is to identify indices that can be used to accel-
erate lookup of commonly-referenced columns with a particular value or falling within a
range. For our experiments, we employed two indexing settings: no indexing, and indexing
on primary key/foreign key fields. Domain knowledge suggests that that the latter approach
would dramatically reduce runtime of some queries. In all cases, the default B-tree index
was employed.

• Page Cost Estimates: In order to determine if an index should be used, the database em-
ploys estimates of the relative cost of sequentially accessing disk pages and randomly ac-
cessing disk pages. We utilized two extremes for this setting: one scheme in which random
page access is estimated to be fast, relative to the sequential page access, and one scheme in
which the opposite relation holds. The corresponding database settings we adjusted were
random page cost and seq page cost.

• Working Memory Allocation: The database engine can make use of fast random-access
memory, if available, to store intermediate query results. The amount of working mem-
ory that is allocated to the system can be controlled with a configuration option. For our
investigation, we employed a low-memory setting and a high-memory setting, with back-
ground knowledge suggesting that the latter would result in faster-executing queries. This
treatment was instrumented with the work mem and temp buffers options.

1.2.2 Outcomes

• Blocks Read from Shared and Temporary Memory: These two outcomes identify the
number of blocks, or memory regions, that were read during query execution. Shared mem-
ory is persistent (disk) and is accessed during normal table-retrieval procedures. Temporary
memory is volatile (main memory) and is used for staging ordering or joining operations.
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Figure 3: Consistent Model for the HTTP Domain

• Blocks Hit in Shared Memory Cache: This outcome represents the number of memory
reads that were to be performed against shared memory, but were identified instead in a
main memory cache.

• Runtime: The total time to execute the query.

1.2.3 Subject Covariates

• Year of Query Creation: The year that the query was entered on the Stack Exchange data
explorer.

• Number of Referenced Tables: The number of distinct tables that are referenced in the
query.

• Total Number of Rows in Referenced Tables: The sum of cardinalities of tables refer-
enced in the query.

• Number of Join Operators: The number of join operators employed in the query, requir-
ing merging data from two tables.

• Number of Grouping Operators: The number of grouping operators employed in the
query, requiring reduction and possibly summarization of the data.

• Number of Other Queries Created by the Same User: The total number of queries that
the Stack Exchange user has created.

• Length of the Query in Characters: The length of the query after application of relevant
rewrite rules.

• Number of Rows Retrieved: The number of rows that are returned by the query. Log-
ically, this value exists prior to application of any treatment and is invariant with respect
to treatment (since the database is fixed), even though we can only measure it after query
execution.

1.3 Hypertext Transfer Protocol

For our experiment on HTTP & networking infrastructure, we used requests to specific web sites
as subjects. We identified a number of target sites through a breadth-first web crawl initiated at
dmoz.org. We ended the crawl after retrieving 5,472 sites. For 4,350 of those sites, we were able
to issue successful web requests with all combinations treatments, yielding 34,800 subject-treatment
combinations. We employed numerous techniques to ensure that content would not be cached, which
could induce carryover across treatment regimes.
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1.3.1 Treatments

• Use of a Mobile User Agent: Web browsers supply a user agent to identify themselves to
the web servers that they request pages from. Some sites have different versions for mobile
applications. We artificially adjusted the user agent from a standard user agent to a mobile
user agent to explore this phenomena. This is accomplished with the HTTP User-Agent
header.

• Proxy Server: Web requests can be routed through a proxy, a server which issues web
requests on behalf of a client. The additional time required to route the request to and
from the proxy server can increase the elapsed time of the request. Our experiments were
executed with Amazon EC2. Our “client” computers were making web requests from the
east cost of the United States, and a proxy server was set up on the west coast.

• Compression: Applications can use the HTTP protocol to request that content be delivered
with or without compression, possibly reducing the cross-network transmission time. In
one compression configuration, the client requests identity compression, indicating
that the content should be transmitted at face value. In another compression scheme, the
client requests gzip, a common and effective scheme for HTTP content compression.

1.3.2 Outcomes

• # of HTML Attributes and Tags: These two outcomes describe the logical structure of
the page. They may vary with respect to “mobile user agent”.

• Elapsed Time: The time between issuance of the request and receipt of a response. This
could be affected by network characteristics, which are determined in part by the time at
which the request is issued and whether a proxy server is employed. Requests containing
smaller payloads (influenced by compression) may also be faster to service.

• Decompressed and Raw Content Length: Two outcomes representing the size of a web
page before and after content decompression, if applicable.

1.3.3 Subject Covariates

Only one subject covariate was identified for the HTTP domain, the web server reported via the
Server header. This variable was coarsened into a version with 7 levels: Apache/2, Other Apache,
Microsoft-IIS, nginx, Other, and Unknown.

2 Identifying Consistent DAGs

To identify DAGs that can consistently estimate the all interventional distributions P (O|do(T )),
we need to ensure that (1) the parent set of T is a valid adjustment set with respect to O, and
(2) if T has a causal effect on O, there is a chain connecting T and O in the DAG model. The
first condition is straightforward to satisfy since we know the only parent of any treatment to be
the covariate used to introduce observational bias. The second condition requires identification
of which pairs of treatments and outcomes are causally related. These d-connection properties
were identified for each domain using the full interventional data set using the Friedman test for
blocked difference in means, allowing for correction of subject variability Friedman [1937]. An
edge was introduced between any causally related pair to satisfy condition (2). Then, ground truth
interventional distributions P (O|do(T = t)) were produced by applying the do-Calculus model
adjustment rules, and answering probability queries P (P |T = t) on the resulting model using
belief propagation.

3 Pseudo-Observational Configurations

We can transform the factorial experiments on our real domains into pseudo-observational data by
sub-sampling the experimental data in a way that is correlated with a “subject covariate”. This
mirrors the process of treatment self-selection common to observational data. This transformation
is outlined in Algorithm 1.
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Input: Interventional data set I , biasing strength β ≥ 0, biasing covariate C
Output: Observationally biased data set O, |O| = nd
l← The number of distinct values of C
foreach Subject e ∈ I do

Let Ce ∈ {1..l} represent the C value of subject e
Assign← {}
foreach Treatment Tj do

sej ←
{

1 if Ce × j is even
−1 if Ce × j is odd

p← logit−1(sejβ)
tj ← Bernoulli(p)
Assign← Assign ∪ {Tj = tj}

end
M ← Record in I corresponding to (e,Assign)
O ← O ∪M

end
Algorithm 1: Logistic Sampling of Observational Data

Figure 4: An Example of an Evaluation of a Causal Modeling Algorithm

4 Schematic for Causal Evaluation

In the paper, we lay out an example of evaluating a causal model. This process is shown schemati-
cally in Figure 4. This shows how pseudo-observational data can be sub-sampled from interventional
data. A model learned from this data can be evaluating by comparing its interventional estimates
to the known effects from the interventional data. One measure for comparing these distributions is
total variation distance (TVD).

4.1 Total variation distance

For discrete outcomes O, the quality of an estimated interventional distribution relative to a known
distribution under TVD is straightforward to compute:

Given such an observational data set, we can apply PC and learn a causal model. A fully pa-
rameterized model can produce an estimated interventional distribution P̂ by applying the do-
calculus [Galles and Pearl, 1995]. Under this framework, causal quantities take the form of proba-
bility queries with do operators, for instance P (O|do(T = 1)). Using independence properties en-
coded in a causal model, these queries can be transformed into estimable expressions without do op-
erators. In addition, we can estimate the actual interventional distributionP = P (O = o|do(T = t))
for any outcome o and treatment t, because we can measure the effects of both values of treatment
for each query in our data set.
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We then can use an interventional measure to compare the true interventional distributions P to
the estimated distribution P̂ . One example of an interventional measure is total variation distance
(TVD) [Lin, 1991]. For discrete outcomes O, the quality of an estimated interventional distribution
relative to a known distribution under TVD is straightforward to compute:

TVP,P̂ ,T=t(O) =
1

2

∑
o∈Ω(O)

∣∣P (O = o|do(T = t))− P̂ (O = o|do(T = t))
∣∣,

where Ω(O) is the domain of O. For continuous distributions, TVD can be computed through an
integral of differences in probability densities.

5 Additional Experiments

In the paper, we provided experiments that demonstrate that TVD and structural measures provide
different information and that information is relevant for over and under specification. To expand on
these results, we performed an additional experiment to evaluate if different types of measures would
lead to different conclusions about the relative performance of causal modeling algorithms. Figure
5 shows results on synthetic data that demonstrate that TVD does, inf act, imply a very different
ordering of the relative performance of different learning algorithms than that implied by SHD and
SID. We began by constructing 30 random DAGs with 14 variables and E[N ] = 2. We generated
parameters on those DAGs using each of the synthetic data techniques and sampled 5,000 data points
from each DAG. Then, we applied PC, MMHC, and GES to the resulting data sets and measured
the SID, SHD, and sum of pairwise total variations. As shown in Figure 5, some of the findings that
would be reached with SID and SHD are not supported by a TV evaluation. The structural measures
suggest that MMHC outperforms PC on the Dirichlet domain. However, the performance of the two
algorithms is statistically indistinguishable as measured by TV. When measured with SID or SHD,
GES does not outperform either MMHC or PC. However, GES is consistently the best performing
algorithm in terms of interventional distribution accuracy.

Experiments in the paper demonstrate that TVD can, at least in some cases, provide information
that structural measures cannot. However, that does not mean that the additional information is
useful. To address this concern, we sought to measure how TVD responds to specific types of
errors in learned structure. Specifically, we evaluate the effects of over-specification (extraneous
edges) and under-specification (omitted edges) on model performance. We used our three empirical
data sets drawn from large-scale computational systems (JDK, Postgres, and HTTP) to perform
this analysis. From the original exhaustive experiments, we can identify which treatment-outcome
pairs are causally related. We construct a partial DAG, consisting only of edges between treatment
and outcome, by introducing an edge between each pair of causally related treatment and outcome.
Then, a pseudo-observational data set can be constructed by sub-sampling treatment assignments
according to a biasing covariate (details in Supplemental Materials). The resulting DAG model
(illustrated for the JDK data set in Figure 1) consistently estimates distributions P (O|do(T = t))
for all treatment-outcome pairs.

We altered the consistent models of each data set to induce over-specification and under-
specification. To quantify the effects of over-specification, we produced models in which one of
the treatment variables had a directed edge into every outcome, regardless of the causal relation-
ships in the true model. To quantify the effects of under-specification, we produced models in which
one of the treatment variables had no outgoing edges. This process was repeated for each of our
three domains and each treatment variable within that domain. For each model, a sum of pairwise
total variations was computed as

∑
T,O TVP,P̂ ,T=1(O), where P represents the reference distribu-

tion given by the consistent model (as in Figure 1) and P̂ represents the distribution induced by the
altered model. A comparison of TVD, SHD, and SID on these experiments is shown in Table 2.

Two properties are apparent. First, over-specification is penalized differently by different evaluation
measures. For small data sets, such as the JDK domain, over-specified models have zero SID but
significant TVD values due to loss of statistical efficiency. Second, penalizing over-specification
and under-specification with equal cost, as in SHD, is inconsistent with interventional distribution
quality. In these domains, model under-specification has 2-5x the distributional impact of under-
specification as measured by total variation.
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Figure 5: Relative Performance of Causal Discovery Algorithms on Synthetic Data Sets

Table 2: Metric Comparison on Real Domains with Over-specification and Under-specification
Domain Subjects Model Type SID: Min, Median, Max SHD: Min, Median, Max TVD: Min, Median, Max

JDK 473 Over-specify 0 0 0 1 3 3 0.04 0.17 0.21
Under-specify 4 5 9 2 2 4 0.22 0.41 0.58

Postgres 5,000 Over-specify 0 0 0 0 1 2 0.00 0.06 0.09
Under-specify 4 6 8 3 4 5 0.17 0.35 0.61

HTTP 2,599 Over-specify 0 0 0 1 2 4 0.06 0.06 0.09
Under-specify 2 6 10 1 3 4 0.22 0.25 0.30

6 Additional Results for Presented Experiments

Figures 6 and 7 show the results of comparing synthetic and interventional measures on synthetic
data for both MMHC and PC. (results for GES were presented in the paper) Interestingly, while the
correlation between SID and SHD is relatively consistent for all three structure learning algorithms,
the correlation between TVD and SHD varies substantially, from seemingly completely uncorrelated
(GES) to very clearly correlated (PC). This suggests that, in some cases, structural measures can
provide a decent proxy for interventional measures. However, it is unlikely that the researcher
knows this to be the case ahead of time, and the comparative difference in TVD between the three
algorithms suggests the value of using TVD when comparing multiple causal learning algorithms.

9



Figure 6: Structural and Interventional Measures Compared on Synthetic Data with MMHC.

Figure 7: Structural and Interventional Measures Compared on Synthetic Data with PC.

We also provide additional results for experiments discussed in the paper that created synthetic
data sets by learning their structure from empirical data. While we reported results using GES and
PC, here we show results for MMHC. Figure 8 shows the performance of three learning algorithms
(GES, MMHC, and PC). MMHC was used to infer a causal model from empirical data, and that
model was then used to generate the synthetic data. Compared with the results in the paper, the
relative performance of different algorithms looks somewhat similar to the results using GES, though
there are some differences (e.g., PC is clearly the worst on all data sets in Figure 8, while this is not
the case for GES in Figure 1 in the paper).
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Patrick Forré and Joris M. Mooij. Constraint-based causal discovery for non-linear structural causal
models with cycles and latent confounders. In Proceedings of the 34th International Conference
on Uncertainty in Artificial Intelligence, pages 269–278, 2018.

Milton Friedman. The use of ranks to avoid the assumption of normality implicit in the analysis of
variance. Journal of the American Statistical Association, 32(200):675–701, 1937.

David Galles and Judea Pearl. Testing identifiability of causal effects. In Proceedings of the 11th
International Conference on Uncertainty in Artificial Intelligence, pages 185–195, 1995.

Tian Gao and Qiang Ji. Local causal discovery of direct causes and effects. In Advances in Neural
Information Processing Systems, pages 2512–2520, 2015.

P. Geiger, D. Janzing, and B. Schölkopf. Estimating causal effects by bounding confounding. In
Proceedings of the 30th international conference on Uncertainty in Artificial Intelligence, pages
240–249, Oregon, 2014.

Philipp Geiger, Kun Zhang, Bernhard Schoelkopf, Mingming Gong, and Dominik Janzing. Causal
inference by identification of vector autoregressive processes with hidden components. In Inter-
national Conference on Machine Learning, pages 1917–1925, 2015.

AmirEmad Ghassami, Saber Salehkaleybar, Negar Kiyavash, and Elias Bareinboim. Budgeted ex-
periment design for causal structure learning. International Conference on Machine Learning,
2017a.

AmirEmad Ghassami, Saber Salehkaleybar, Negar Kiyavash, and Kun Zhang. Learning causal
structures using regression invariance. In Advances in Neural Information Processing Systems,
pages 3011–3021, 2017b.

AmirEmad Ghassami, Negar Kiyavash, Biwei Huang, and Kun Zhang. Multi-domain causal struc-
ture learning in linear systems. In Advances in Neural Information Processing Systems, pages
6269–6279, 2018.

Mingming Gong, Kun Zhang, Bernhard Schoelkopf, Dacheng Tao, and Philipp Geiger. Discover-
ing temporal causal relations from subsampled data. In International Conference on Machine
Learning, pages 1898–1906, 2015.

Mingming Gong, Kun Zhang, Bernhard Schölkopf, Clark Glymour, and Dacheng Tao. Causal
discovery from temporally aggregated time series. In Proceedings of the 33rd international con-
ference on Uncertainty in Artificial Intelligence, volume 2017, 2017.

Anthony G Greenwald. Within-subjects designs: To use or not to use? Psychological Bulletin, 83
(2):314, 1976.

Chikara Hashimoto, Kentaro Torisawa, Julien Kloetzer, and Jong-Hoon Oh. Generating event
causality hypotheses through semantic relations. In Proceedings of the 29th AAAI Conference
on Artificial Intelligence, pages 2396–2403, 2015.

Daniel N Hill, Robert Moakler, Alan E Hubbard, Vadim Tsemekhman, Foster Provost, and Kiril
Tsemekhman. Measuring causal impact of online actions via natural experiments: Application
to display advertising. In Proceedings of the 21th ACM SIGKDD international conference on
Knowledge Discovery and Data Mining, pages 1839–1847, 2015.

Huining Hu, Zhentao Li, and Adrian R Vetta. Randomized experimental design for causal graph
discovery. In Advances in Neural Information Processing Systems, pages 2339–2347, 2014.

Shoubo Hu, Zhitang Chen, Vahid Partovi Nia, Lai-Wan Chan, and Yanhui Geng. Causal inference
and mechanism clustering of A mixture of additive noise models. In Advances in Neural Infor-
mation Processing Systems, pages 5212–5222, 2018.

13



Biwei Huang, Kun Zhang, Yizhu Lin, Bernhard Schölkopf, and Clark Glymour. Generalized score
functions for causal discovery. In Proceedings of the 24th ACM SIGKDD international conference
on Knowledge Discovery & Data Mining, pages 1551–1560, 2018.

Antti Hyttinen, Frederick Eberhardt, and Matti Järvisalo. Constraint-based causal discovery: Con-
flict resolution with answer set programming. In Proceedings of the Thirtieth Conference on
Uncertainty in Artificial Intelligence, pages 340–349, 2014.

Mohammad T Irfan and Luis E Ortiz. Causal strategic inference in networked microfinance
economies. In Advances in Neural Information Processing Systems, pages 1161–1169, 2014.

Amin Jaber, Jiji Zhang, and Elias Bareinboim. Causal identification under markov equivalence. In
Proceedings of the 34th International Conference on Uncertainty in Artificial Intelligence, pages
978–987, 2018.

Dominik Janzing and Bernhard Schoelkopf. Detecting non-causal artifacts in multivariate linear
regression models. International Conference on Machine Learning, 2018.

Mohammad Javidian and Marco Valtorta. Finding minimal separators in ancestral graphs. In Causal-
ity workshop at the 34th international conference on Uncertainty in Artificial Intelligence, 2018.

Nathan Kallus. Causal inference by minimizing the dual norm of bias: Kernel matching & weighting
estimators for causal effects. In Causality workshop at the 32nd international conference on
Uncertainty in Artificial Intelligence, 2016.

Nathan Kallus, Xiaojie Mao, and Madeleine Udell. Causal inference with noisy and missing co-
variates via matrix factorization. In Advances in Neural Information Processing Systems, pages
6921–6932, 2018.
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